Correction: 3D Bioprinting Technologies for Hard Tissue and Organ Engineering. Materials 2016, 9, 802
نویسندگان
چکیده
Xiaohong Wang 1,2,*, Qiang Ao 1, Xiaohong Tian 1, Jun Fan 1, Yujun Wei 1, Weijian Hou 1, Hao Tong 1 and Shuling Bai 1 1 Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; [email protected] (Q.A.); [email protected] (X.T.); [email protected] (J.F.); [email protected] (Y.W.); [email protected] (W.H.); [email protected] (H.T.); [email protected] (S.B.) 2 Department of Mechanical Engineering, Tsinghua University, Center of Organ Manufacturing, Beijing 100084, China * Correspondence: [email protected] or [email protected]; Tel.: +86-189-0091-1302
منابع مشابه
3D Bioprinting Technologies for Hard Tissue and Organ Engineering
Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue...
متن کامل3D bioprinting for engineering complex tissues.
Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, curren...
متن کاملTowards artificial tissue models: past, present, and future of 3D bioprinting.
Regenerative medicine and tissue engineering have seen unprecedented growth in the past decade, driving the field of artificial tissue models towards a revolution in future medicine. Major progress has been achieved through the development of innovative biomanufacturing strategies to pattern and assemble cells and extracellular matrix (ECM) in three-dimensions (3D) to create functional tissue c...
متن کاملSolid organ fabrication: comparison of decellularization to 3D bioprinting
Solid organ fabrication is an ultimate goal of Regenerative Medicine. Since the introduction of Tissue Engineering in 1993, functional biomaterials, stem cells, tunable microenvironments, and high-resolution imaging technologies have significantly advanced efforts to regenerate in vitro culture or tissue platforms. Relatively simple flat or tubular organs are already in (pre)clinical trials and...
متن کاملResearch on the printability of hydrogels in 3D bioprinting
As the biocompatible materials, hydrogels have been widely used in three- dimensional (3D) bioprinting/organ printing to load cell for tissue engineering. It is important to precisely control hydrogels deposition during printing the mimic organ structures. However, the printability of hydrogels about printing parameters is seldom addressed. In this paper, we systemically investigated the printa...
متن کامل